§ 192.105 loads that will be imposed on the pipe after installation. ### § 192.105 Design formula for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following formula: $P=(2 St/D)\times F\times E\times T$ - P=Design pressure in pounds per square inch (kPa) gauge. - S=Yield strength in pounds per square inch (kPa) determined in accordance with §192.107. - D=Nominal outside diameter of the pipe in inches (millimeters). - t=Nominal wall thickness of the pipe in inches (millimeters). If this is unknown, it is determined in accordance with §192.109. Additional wall thickness required for concurrent external loads in accordance with §192.103 may not be included in computing design pressure. - F=Design factor determined in accordance with § 192.111. - E=Longitudinal joint factor determined in accordance with §192.113. - T=Temperature derating factor determined in accordance with §192.115. - (b) If steel pipe that has been subjected to cold expansion to meet the SMYS is subsequently heated, other than by welding or stress relieving as a part of welding, the design pressure is limited to 75 percent of the pressure determined under paragraph (a) of this section if the temperature of the pipe exceeds 900 °F (482 °C) at any time or is held above 600 °F (316 °C) for more than 1 hour. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–47, 49 FR 7569, Mar. 1, 1984; Amdt. 192–85, 63 FR 37502, July 13, 1998] # § 192.107 Yield strength (S) for steel pipe. - (a) For pipe that is manufactured in accordance with a specification listed in section I of appendix B of this part, the yield strength to be used in the design formula in §192.105 is the SMYS stated in the listed specification, if that value is known. - (b) For pipe that is manufactured in accordance with a specification not listed in section I of appendix B to this part or whose specification or tensile properties are unknown, the yield strength to be used in the design formula in §192.105 is one of the following: - (1) If the pipe is tensile tested in accordance with section II-D of appendix B to this part, the lower of the following: - (i) 80 percent of the average yield strength determined by the tensile tests. - (ii) The lowest yield strength determined by the tensile tests. - (2) If the pipe is not tensile tested as provided in paragraph (b)(1) of this section, 24,000 p.s.i. (165 MPa). [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–78, 61 FR 28783, June 6, 1996; Amdt. 192–83, 63 FR 7723, Feb. 17, 1998; Amdt. 192–85, 63 FR 37502, July 13, 1998] ## § 192.109 Nominal wall thickness (t) for steel pipe. - (a) If the nominal wall thickness for steel pipe is not known, it is determined by measuring the thickness of each piece of pipe at quarter points on one end. - (b) However, if the pipe is of uniform grade, size, and thickness and there are more than 10 lengths, only 10 percent of the individual lengths, but not less than 10 lengths, need be measured. The thickness of the lengths that are not measured must be verified by applying a gauge set to the minimum thickness found by the measurement. The nominal wall thickness to be used in the design formula in §192.105 is the next wall thickness found in commercial specifications that is below the average of all the measurements taken. However, the nominal wall thickness used may not be more than 1.14 times the smallest measurement taken on pipe less than 20 inches (508 millimeters) in outside diameter, nor more than 1.11 times the smallest measurement taken on pipe 20 inches (508 millimeters) or more in outside diameter. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37502, July 13, 1998] ## \$192.111 Design factor (F) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the design factor to be used in the design formula in §192.105 is determined in accordance with the following table: | Class location | Design factor (F) | |----------------|-------------------| | 1 | 0.72
0.60 | | 3 | 0.50
0.40 | - (b) A design factor of 0.60 or less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that: - (1) Crosses the right-of-way of an unimproved public road, without a casing; - (2) Crosses without a casing, or makes a parallel encroachment on, the right-of-way of either a hard surfaced road, a highway, a public street, or a railroad; - (3) Is supported by a vehicular, pedestrian, railroad, or pipeline bridge; or - (4) Is used in a fabricated assembly, (including separators, mainline valve assemblies, cross-connections, and river crossing headers) or is used within five pipe diameters in any direction from the last fitting of a fabricated assembly, other than a transition piece or an elbow used in place of a pipe bend which is not associated with a fabricated assembly. - (c) For Class 2 locations, a design factor of 0.50, or less, must be used in the - design formula in \$192.105 for uncased steel pipe that crosses the right-of-way of a hard surfaced road, a highway, a public street, or a railroad. - (d) For Class 1 and Class 2 locations, a design factor of 0.50, or less, must be used in the design formula in §192.105 for— - (1) Steel pipe in a compressor station, regulating station, or measuring station; and - (2) Steel pipe, including a pipe riser, on a platform located offshore or in inland navigable waters. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–27, 41 FR 34605, Aug. 16, 1976] #### § 192.112 Additional design requirements for steel pipe using alternative maximum allowable operating pressure. For a new or existing pipeline segment to be eligible for operation at the alternative maximum allowable operating pressure (MAOP) calculated under §192.620, a segment must meet the following additional design requirements. Records for alternative MAOP must be maintained, for the useful life of the pipeline, demonstrating compliance with these requirements: | To address this design issue: | The pipeline segment must meet these additional requirements: | |---|---| | (a) General standards for the steel pipe. | (1) The plate, skelp, or coil used for the pipe must be micro-alloyed, fine grain, fully killed, con tinuously cast steel with calcium treatment. | | | (2) The carbon equivalents of the steel used for pipe must not exceed 0.25 percent by weight
as calculated by the Ito-Bessyo formula (Pcm formula) or 0.43 percent by weight, as cal
culated by the International Institute of Welding (IIW) formula. | | | (3) The ratio of the specified outside diameter of the pipe to the specified wall thickness mus
be less than 100. The wall thickness or other mitigative measures must prevent denting and
ovality anomalies during construction, strength testing and anticipated operational stresses. | | | (4) The pipe must be manufactured using API Specification 5L, product specification level 2
(incorporated by reference, see §192.7) for maximum operating pressures and minimum
and maximum operating temperatures and other requirements under this section. | | (b) Fracture control | (1) The toughness properties for pipe must address the potential for initiation, propagation and
arrest of fractures in accordance with: | | | (i) API Specification 5L (incorporated by reference, see § 192.7); or (ii) American Society of Mechanical Engineers (ASME) B31.8 (incorporated by reference, see § 192.7); and | | | (iii) Any correction factors needed to address pipe grades, pressures, temperatures, or gas
compositions not expressly addressed in API Specification 5L, product specification level 2
or ASME B31.8 (incorporated by reference, see §192.7). | | | (2) Fracture control must: | | | (i) Ensure resistance to fracture initiation while addressing the full range of operating tempera
tures, pressures, gas compositions, pipe grade and operating stress levels, including max
imum pressures and minimum temperatures for shut-in conditions, that the pipeline is ex-
pected to experience. If these parameters change during operation of the pipeline such tha
they are outside the bounds of what was considered in the design evaluation, the evaluation
must be reviewed and updated to assure continued resistance to fracture initiation over the
operating life of the pipeline; | | | (ii) Address adjustments to toughness of pipe for each grade used and the decompression be
havior of the gas at operating parameters; | | | (iii) Ensure at least 99 percent probability of fracture arrest within eight pipe lengths with a
probability of not less than 90 percent within five pipe lengths; and |